
oi/

AD- A282 839CoptrSIne~

AA

1 ~ h~ ~"

$ Computing Quantitative Characteristics
of Finite-State Real-Time Systems

S. Campos E. Clarke W. Marrero MN. MIinea
H. Hiraishi'
May 4, 1994

CMU-CS-94-14T

ij'WT M

Ht:i
U I .kjj

now 4A 4

Mal wooW

4N 2RCNNWi

Computing Quantitative Characteristics
of Finite-State Real-Time Systems

S. Campos E. Clarke W. Marrero M. Minea

H. Hiraishi*

May 4, 1994

CMU-CS-94-147

Accesion For

NTIS CRA&I
DTIC TAB
U r~annou nced0Justification School of Cort 'uter Science

Carnegie Mellon University

By Pittsburgh, PA 15213 D T IC
Dit. ibutionj I L CT

Availability Codes * Dept. of Information and Communication Sciences j i, 2 91994
Dict Avail and / or Kyoto Sangyo University

Special Kyoto, Japan

Abstract

Current methods for verifying real-time systems are essentially decision procedures that establish whether
the system model satisfies a given specification. We present a general method for computing quantitaltr'
information about finite-state real-time systems. We have developed algorithms that compute exact bounds
on the delay between two specified events and on the number of occurrences of an event in a given interval.
This technique allows us to determine performance measures such as schedulability, response time, and
system load. Our algorithms produce more detailed information than traditional methods. This information
leads to a better understanding of system behavior, in addition to determining its correctness. We also show
that our technique can be extended to a more general representation of real-time systems, namely, timed
transition graphs.. The algorithms presented in this paper have been incorporated into the SMV model
checker and used to verify a model of an aircraft control system. The results obtained demonstrate that our
method can be successfully applied in the verification of real-time system designs.

This research was sponsored in part by the National Science Foundation under grant no. CCR-8722633, by the
Semiconductor Research Corporation under contract 92-DJ-294, and by The Defense Advanced Research Projects
Agency, Information Science and Technology Office, under the title "Research on Parallel Computing", ARPA Order
No. 7330, issued by DARPA/CMO under Contract MDA972-90-C-0035.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of NSF, SRC, or the U.S. government.

Keywords: real-time systems, finite-state models, formal verification, symbolic model check-
ing, rate monotonic scheduling, schedulability, response time

1 Introduction

A number of algorithms have recently been proposed for verifying the behavior of finite-state real-

time systems (3, 6, 8, 9, 10]. These algorithms assume that timing constraints are given explicitly

in some notation like temporal logic. Typically, the designer provides a constraint on response time

for some operation, and the verifier automatically determines if it is satisfied or not. Unfortunately,

after performing the verification, the designer only knows if the timing constraint was met, or if

it was violated. In particular, these techniques do not provide any information about how much a

system deviates from its expected performance, although this information can be extremely useful

in fine-tuning the behavior of the system.

In this paper we give algorithms to compute quantitative timing information, such as exact

upper and lower bounds on the time between a request and the corresponding response. Our

algorithms provide insight into how well a system works, rather than just determining whether it

works at all. They enable a designer to determine the timing characteristics of a complex system

given the timing parameters of its components. This information is especially useful in the early

phases of system design, when not all parameters have been fixed. In this case. the information

provided by our algorithms can be used to establish how changes in a parameter affect the global

behavior of the system.

We model a real-time system as a labeled state-transition graph, where each path corresponds

to an execution trace of the actual system. We show how to determine the length of the paths

leading from a set of starting states (representing the request) to a set of final states (representing

the response). In particular, we develop algorithms to compute the minimum and maximum lengths

over all such paths, where the minimum length corresponds to the time before which no response

can arrive, and the maximum length represents the time aftes which the given event is guaranteed

to have occurred.

Alternatively, we may be interested not only in the length of a path but also in the number of

states on this path that satisfy a given condition. For example. a subsystem may request access to

a shared bus. The time until it accesses the bus is an important measure of performance. However.

the bus may be granted to other subsystems before this request is satisfied. The number of times

this happens is a significant indication of the load on the bus and can be computed by algorithms

similar to those discussed above. These new algorithms calculate the minimum and the maximum

number of times a specified condition can hold on a path from a set of starting sta! s to a set of

final states.

These algorithms are also extended to timed transition graphs (TTG) [6). TTGs are state-

transition graphs where transitions may take more than one time unit to occur. These extensions

I

allow us to compute quantitative characteristics of real-time systems modelled as TTGs. We believe

that-the techniques developed can be adapted to other models of computation as well.

All of our algorithms use a discrete model of time. In recent years, there has been considerable

research on continuous time models [1, 2, 11, 13, 18]. Most of these models use a transition relation

with a finite set of real-valued clocks and constraints on times when transitions may occur. It can

be argued that such models lead to more accurate results than discrete time models. However,

continuous time models require an infinite state space because the time component in the states

can take arbitrary real values. Most verification procedures based on this type of model depend on

constructing a finite quotient space called a region graph out of the infinite state space. Unfortu-

nately, the region graph construction is very expensive in practice and current implementations of

algorithms that use it can only handle at most a few thousand states. Because we use a discrete

model of time, we are able to take advantage of symbolic techniques [5, 17] in which the transition

relation is represented by a binary decision diagram (BDD). This enables us to handle systems that

are several orders of magnitude larger than can be handled using continuous time techniques.

To demonstrate how our tools work. we verify a simplified aircraft control system. We model

the software that controls the various components of an airplane, and gather timing information

about the system using the tools described above. The system consists of set of priority driven

processes, where each process is responsible for a subsystem of the aircraft. Subsystems being

controlled include navigation, display, radar and weapons. We use the algorithm defined by the

rate monotonic scheduling theory (RMS) [12, 15, 20] to make the system predictable. This algorithm

assigns higher priorities to processes with shorter periods. Optimal response time is guaranteed by

the RMS theory if priorities are assigned according to this rule [151.

The RMS theory proposes a schedulability test based on total CPU utilization: a set of processes

(which have priorities assigned according to R9?S) is schedulable if the total utilization is below

a computed threshold. If the utilization is above this threshold. schedulability is not guaranteed.

This analysis imposes a series of restrictions on the set of processes. Only certain types of processes

are considered with limitations, for example, on periodicity and synchroni7aLion.

Another approach to schedulability analysis uses algorithms for computing the set of reachable

states of a finite-state system [9, 10]. The algorithms construct the model with the added constraint

that whenever an exception occurs (e.g. a deadline is missed) the system transitions to a special

exception state. Verification consists of computing the set of reachable states and checking whether

the exception state is in this set. No restrictions are imposed on the model in this approach, but the

algorithm only checks if exceptions can occur or not. Quantitative information is not generated,

and other types of properties cannot be verified, unless encoded in the model as exceptions.

We develop an analysis method that does not impose any restriction except that the system be

2

modeled as a set of processes that run in parallel and are defined by state-transition graphs. For

example, the actual functional behavior of each process can be modeled and analyzed. Schedula-

bility is determined by computing the minimum and maximum execution times for all processes.

The process set is schedulable if and only if each process is guaranteed to finish execution before its

next period starts. Our technique always determines if the set of processes is schedulable or not,

unlike RMS analysis, which may not provide any schedulability information if utilization is above

the computed threshold. If the processes are not schedulable, our algorithms determine which spe-

cific deadlines are missed and by how much. When no deadline is missed, the same results provide

response times for each process, an important performance measure for real-time systems.

Besides determining schedulability, the computation of quantitative characteristics can also

provide other valuable information about the system being modeled. Some of the results we have

obtained for our example are:

" The amount of time the processor can remain idle while waiting for processes to be scheduled.

This information helps the designer to decide if and by how much the load on the processor

can be increased without losing schedulability.

" The overhead associated with preemption by other processes. This information is extremely

important for determining the amount of priority inversion in a system.

" How responsive subsystems like weapon control are to commands issued by the pilot. In our

example, if the pilot presses the fire button a complex sequence of events is generated. We

were able to determine the overhead imposed by the firing protocol. This helps the designer

understand how this protocol affects the overall response time of the system.

The different types of properties described above show how versatile this approach is. Many

other quantitative characteristics can be computed by our algorithms. Moreover, in each case we

were able to provide the user with insight into the behavior of the system, as opposed to only

asserting its correctness. This information leads to a better understanding of system behavior and

can be essential in improving performance.

The remainder of the paper is organized as follows. The next section defines BDDs. which play

an important role in our symbolic methods. Section 3 explains how we model real-time systems.

In Section 4 the algorithms for computing the longest and shortest paths between two state sets

are presented. Algorithms for counting the number of states that satisfy a given condition along

a path between two sets of states are described in section 5. An extension of our methods to

timed transition graphs is presented in section 6. Section 7 contains a detailed description of the

aircraft control system example mentioned earlier, while section 8 discusses the experimental results

obtained. Section 9 concludes the paper with directions for future work.

3

2 Binary Decision Diagrams

Binary decision diagrams (BDDs) are a canonical representation for Boolean formulas [4]. A BDD

is similar to a binary decision tree except that its structure is a directed acyclic graph rather than

a tree. This allows nodes and substructures to be shared. The vertices of the graph are labeled

with the variables of the Boolean formula, except for the two "leaves" which are labeled with 0 and

1. To insure canonicity, a strict total order is placed on the variables as one traverses a path from

the "root" to a "leaf." The edges are labeled with 0 or 1. For every truth assignment there is a

corresponding path in the BDD such that at vertex x, the edge labeled 1 is taken if the assignment

sets z to 1; otherwise, the edge labeled 0 is taken. If the pa a ends in the "leaf" labeled 0, then

the assignment does not satisfy the formula, and conversely, if the "leaf" reached is labeled 1, then

the formula is satisfied by the assignment. Figure 1 illustrates the BDD for the Boolean formula

(a A b) V (c A d).

0
b

0

0 d

0

01

Figure 1: BDD for (a A b) V (c A d)

In [4J, Bryant shows that given a variable ordering, the BDD for a formula is unique. The

paper also gives efficient algorithms for computing the BDDs for -f and f V g given the BDDs for

f and g. For the purposes of symbolic model checking, it is also necessary to quantify over Boolean

formulas. Bryant describes an algorithm for computing the BDD of a restricted formula such as

f lv=o or f , This allows us to compute the BDD for the formula 3v[f, where v is a Boolean

variable and f is a Boolean formula, as f J,=o vf 1,1. However, our implementation uses other

known algorithms for performing quantification which are more efficient when multiple variables

need to be quantified.

All of the formulas used in our algorithms are represented by BDDs. The BDDs for these

formulas are built up in a bottom-up manner. The set of atomic propositions in these formulas is

precisely the set of state variables, therefore the BDD for an atomic proposition consists simply

of a single BDD variable. Since a formula is built up from atomic propositions using Boolean

4

connectives, the BDDs for a formula can be constructed using the BDD operations discussed in the

previous paragraph. In fact, the implementation allows arbitrary state formulas of computation

tree logic (CTL) [7]. These formulas may contain branching time operators as well as logical

connectives, but for the sake of simplicity, this discussion is limited to Boolean formulas.

3 Modeling Real Time Systems

The real-time systems we verify are modeled using state-transition graphs. A state U in this model

can be thought of as a vector assigning values to the state variables vi, v2 , v3 , ... v,,n. The transition

relation N(9,7) evaluates to true when there is a transition in the model from the state 'i to the

state -7 , where - = (VI, - -, v,) and v7 = (I,..., un). A path in the transition graph is defined as a

sequence of states vo,Wv1 ,V2 such that N(W,VT) is true for every i > 0. In addition, we define

a set of initial states, and all computations are performed on states reachable from this set.

The transition relation N(U, ') for the state-transition graph is easily represented using a

BDD. The variables of the BDD will consist of two copies of the state variables, one for the

current state and the other for the next state. The BDD is the characteristic function of N(7, v).

To see if there is a transition from s to s', we simply assign the values of the state variables

in state s, (s1,S2,33,... ,s,), to W, and similarly for s' and v7. If the path in the BDD for this

assignment ends in the node labeled 1, then there is a transition from s to s', otherwise there is no

transition. An example of a state transition graph is given in Figure 2 where the state variables

are a and b, and the transition relation N can be represented by the formula N((a.b). (a'. b') =

(b A b') V (a A b') V (-a A -b A a' A -b').

Figure 2: A sample state transition graph

Finally, we demonstrate a close relationship between Boolean formulas, BDDs, and state sets.

As stated previously, we use BDDs as a canonical form representation for Boolean formulas. Also,

when we consider a formula, we are usually interested in the se t of states which satisfy it. We can

5

find these states easily, using the BDD for the foimula. We check that a state satisfies the formula,

simply by assigning the values of its state variables to the corresponding variables in the BDD. For

this reason, we identify a formula with the set of states which satisfy it. If S denotes a formula (or

a set of states), we define S(70) to be the BDD representing S. We also note that a state satisfies

the conjunction of two formulas if and only if it is in the intersection of the sets identified with the

formulas. We can make similar statements about disjunction and union, and about negation and

complementation. Because discussing sets of states is more intuitive than discussing operations

on formulas, we present our algorithms using sets and set operations but the implementation uses

BDDs and the corresponding BDD operations.

4 Lower and Upper Bound Algorithms

This section contains the lower and upper bound algorithms. We consider the lower bound algo-

rithm first (figure 3). The algorithm takes two sets of states as input, start and final. [t returns

the length of (i.e. number of edges in) a shortest path from a state in start to a state in final. If

no such path exists, the algorithm returns infinity. The function T(S) gives the set of states that

are successors of some state in S (i.e. T(S) = {s' I N(s,s') holds for some s E S}). The algorithm

also uses two variables R and R' to represent sets of states. The function T, the sets R and R'.

and the operations of intersection and anion can all be easily implemented using BDDs.

proc lower (start, final)
i = 0;
R =start;
R' = T(R) U R;
while (R' i R A R n final = 0) do

i = i +1;
R R';
R'= T(R') U R';

if (R n final 5 0)
then return i;
else return oo;

Figure 3: Lower Bound Algorithm

The first algorithm is relatively straightforward. Intuitively, the loop in the algorithm computes

the set of states tl- ,t are reachable from start. If at any point, we encounter a state satisfying final,

we return the number of steps taken to reach the state. In the formal proof of correctness, we use

the following notation:

" Si is the set of states reachable in i or fewer steps from a state in start.

" L is the length of a shortest path from a state in start to a state in final.

6

The correctness of the algorithm follows from the following loop invariants:

o i<L

* R=S'

*W = Si+1

We observe that the three initializing statements insure that the invariants are satisfied before

entering the loop. Next we show that the body of the loop maintains the invariants, provided the

loop test is satisfied.

" The loop invariant on R, R = Si, and the second half of the loop test, R n final = 0 imply

that i < L, otherwise some state in Si would belong to final. This inequality implies i + 1 < L

so we can safely increment i without violating the invariant on i.

" The second statement sets R to the value of R', so now R = Si+. This means that R now

satisfies its invariant with the new value of i.

" The last statement sets R' to the union of R' and the image of R'. So by construction, we

know that R' = Si+2 Therefore, R' satisfies its invariant with the new value for i.

Next we argue about termination. By the definition of Si, we must have So C S C 2 C

Since the number of states is finite, only a finite number of the inclusions can be proper, and it

must be the case that Sk = Sk+1 for some k > 0. From the loop invariant we know that R = i

and R = Si+,; therefore, the loop cannot execute more than k times without the loop test R' R

becoming false.

We finish the proof by analyzing what happens at the final conditional. If R n final 4 0. then

by the loop invariant, R = Si, s belongs to final for some s E Si. From the definition of .i. we

know that this state is reachable in i or fewer steps from a state in .start. This gives us an upper

bound on L. L < i. The invariant on i, however, is L > i. Therefore. it must be the case that

L = i.

If the test is false, then we must have exited the loop because R?' = R. From the invariant.

R = Si and R' = Si+l; therefore, Si = Si+'. This in turn means that after reaching all the states

in Si we cannot reach any new states (all the edges of states in 5i lead to states in Si). The false

test tells us that no state in R belongs to final, and we have just argued that R? is the set of all

reachable states. Therefore, there is no path from a state in start to a state in final, so we return

infinity.

Next, we consider the upper bound algorithm (figure 4). This algorithm also takes .start and

final as input. It returns the length of a longest path from a state in start to a state in final. If

there exists an infinite path beginning in a state in start that never reaches a state in final, the

algorithm returns infinity. The function T-'(S') gives the set of states that are predecessors of

some state in S' (i.e. T-I(S') = {s I N(s,s') holds for some s' E S}). R and R' will again be

7

sets of states. We also denote by not-final the set of all states that are not in final. As before, the

algorithm is implemented using BDDs.

proc upper (start, finalP
i = 0;
R = TRUE;
R' =not-final;
while (R' # R A R n start # 0) do

i=i+1;R = i;

R= T- 1(R') n not-final;
if (R = R')

then return oo;
else return i;

Figure 4: Upper Bound Algorithm

The upper bound algorithm is more subtle than the previous algorithm. In particular, we must

return infinity if there exists a path beginning in start that remains within not-final. A backward

search from the states in not-final is more convenient for this purpose than a forward search. We

use the following two definitions in proving the algorithm correct:

" Si is the set of states at the beginning of a path containing i states, all contained in not-final.

" M is the number of states in a longest path beginning inside start and contained within

not-final.

Mthough ultimately we are interested in the number of edges in a longest path. it is easier to

reason when we count the number of states in a path. The correctness of the algorithm then follows

from the following loop invariants:

*i < M
* R=Si

' = Si+1

We observe that the three initializing statements insure that the invariants are satisfied before

entering the loop. We can also show that the statements within the loop maintain the invariants.

provided the loop test is satisfied.

" The invariant on R', R' = Si+I, and the second half of the loop test, R' n start 74 0 imply

that i + I < M. Therefore, we can increment i without violating the invariant on i.

" The second statement sets R to the value of R' so we know that now R = Si+j. This means

that R now satisfies its invariant with the new value for i.

" The third statement sets R' to the inverse image of R' intersected with not-final. The invariant

gave us that R' = Si+. By construction, we now have that R' C Si+2. For the inclusion

8

in the other direction, we observe that any path of i + 2 states contained in not-final can be

thought of as a state labeled with not.final that has an edge to a path of i + 1 states labeled

with not-final. In other words, the states in Si+2 are states in not-final with an edge to a

state in Si+,. But these are precisely the states just computed for the new value of R' so we

get that Si+2 C R'. This means that R' also satisfies its invariant with the new value for i.

Now we argue about termination. First, it should be clear from the definition of Si that

So 2 S1 Q S2 D "" .". Since we are dealing with a finite -iumber of states, the initial value, So must

be a finite set, which in turn means that only a finite number of the inclusions are proper. Therefore.

it must be the case that Sk = Sk+1 for some k > 0. By the invariant, R = Si and R' = .5'i+; thus.

,the loop cannot execute more than k times without the loop test R' $ R becoming false.

Before continuing, we make an observation about the loop test. It can never be the case that

both parts of the loop condition are false. If we assume that both parts of the loop condition are

false, then both R = R and R' n start = 0 giving us that R n start = 0. If we then unroll the loop

once, we notice that at the previous iteration. R was assigned the value of R' which would mean

that we would have had R' n start = 0 and we would have exited the loop at tOat point.

We complete the proof by analyzing what happens at the final conditional. We first consider

the case where we exit the loop because R = R'. In this case, we have reached a fixed-point. By

the invariant, R = Si and R' = Si+,; therefore we have Si = Si+,. We argued previously that the

states in Si+1 have edges to states in Si. Since Si+l = Si, we know that every state in Si+1 has an

edge to another state in Si+i. So every state in Si+1 is the beginning of an infinite path of states

remaining in Si+1 g not-final. The previous observation tells us that R'fn start # 0. therefore some

state s E 5 i+1 belongs to start. This state then is the beginning of an infinite path starting at a

state in start, which never reaches a state in final, so we return infinity.

If R' n start = 0, then by the invariant R' = Si+1. we know that there is no pathlI of i + I

states contained in not-final beginning in a state in start. No longer path can exist since this would

contradict the absence of a path of i + I states, so we have 1I < i. But we also have the invarialnt

i < M, so it must be the case that M = i. All edges coming out of the last state on the path lead

to states in final (otherwise there would be a longer path). Since the transition relation is total.

there must exist at least one such edge. Therefore, the longest path from a state in start to a state

in final contains i + 1 states and has length i.

5 Condition Counting Algorithms

In many situations we are interested not only in the length of a path leading from a set of starting

states to a set of final states, but also in measures that depend on the number of states on the path

that satisfy a given condition. For example, we may wish to determine the minimum (maximum)

9

number of times a condition holds on a path, or the minimum (maximum) percentage of states

that satisfy a given condition, on any path from starting to final states.

Both algorithms in this section take as input three sets of states: start, cond and final. The

algorithms compute the minimum and the maximum number of states that belong to cond, over

all finite paths that begin with a state in start and terminate upon reaching final.

To simplify the algorithms, we assume that any path beginning in start must reach a state

in final in a finite number of steps. This requirement is necessary to ensure that the minimum

(maximum) is well-defined. It can be checked using the upper bound algorithm described in the

previous section. Finally, we assume that all computations involve only reachable states. This can

be achieved by intersecting start with the set of reachable states computed a priori.

To keep track at each step of the nurn)er of states in cond that have been traversed, we define

a new state-transition system, in which the states are pairs consisting of a state in the original

system and a positive integer. Thus, if the original state-transition graph has state set S, then the

augmented state set will be S, = S x IN.

If N C S x S is the transition relation for the original state-transition graph, we define the

augmented transition relation N C_ S, x S., as

Na((s.k).(s',k')) = N(s,s') A (s' E condA k' = k + 1V s' V condA k' = k)

In other words, there will be a transition from (s, k) to (s', k') in the augmented transition relation

N iff there is a transition from s to s' in the original transition relation N and either .W" E cond

and k' = k + 1 or s' cond and k' = k. We also define T to be the function that for a given set

U C S,, returns the set of successors of all states in U. More formally, T(U) = {u' I N(11. it') holds

for some u E U}. In the actual BDD-based implementation, an initial bound kma, can be selected

to achieve a finite representation for k. and new BDD variables can be added dynamically if this

bound is exceeded. The system is still fiite-state because all paths we consider are finite and k is

bounded by their maximum length.

The algorithm for computing the minimum count is given in figure 5. In the algorithm text.

Final and Notfinal denote the sets of states in final and S - final, paired with all possible values

of k. More formally:

Final = {(s,k) 1 s E final, k E IN} and Not final = {(s,k) I s final, k E IN}

The algorithm uses R to represent the state set in Sa reached at the current iteration, while

Reached-final and R' are its intersections with Final and Not-final respectively. Variable cur-

rent.min denotes the minimum count for all previous iterations. The minimum computation over

the set of values of k can be done by quantifying out the state variables and following the left-

10

proc mincount (start, cond, final)
current-min = 0o;

R = {(s, 1) 1I E start n cond} U {(s,O) sE start n cond};
loop

Reached-final = R n Final;
if Reached.final 6 0 then

m = min{k I (s, k) E Reached final};
if m < current-min then currentmrin = m;

R' = R n Not-final;
if R' = 0 then return current-min;
R = T(k);

endloop;

Figure 5: Minimum Condition Count Algorithm

most nonzero branch in the resulting BDD, provided it uses an appropriate variable ordering. An

efficient algorithm that does not depend on the variable ordering is given in [141.

At iteration i, the algorithm considers the endpoints of paths with i states. The reached states

that belong to final are terminal states on paths that we need to consider. The minimum count

for these paths is computed, using the counter component of the path endpoints, and the current

value of the minimum is updated if necessary. For the reached states that do not belong to final.

we continue the loop after computing their successors. If all reached states are in final, there are

no further paths to consider and the algorithm returns the computed minimum.

We reason about the correctness of the algorithm by showing that the following invariants are

true before the ith iteration of the loop:

* I,: A pair (s, k) belongs to R iff s can be reached from start on a path with i states, on which

k states are in cond. and only the last state is allowed to be in final.

* 12: current-min is the minimum number of states in cond over all paths with less than i

states that begin in start and terminate upon reaching final, or infinity if there are no such

paths.

Initially, R contains the states in start, paired with I if they belong to cond and with 0 otherwise.

and current-min is infinity. Therefore, both invariants hold before the first loop iteration.

By invariant 11, the intersection Reached.final = R n Final contains all states in final reached

for the first time by a path containing i states. The count component k of a reached state is. again

by 11, the number of states in cond on such a path. Computing the minimum in of these values

and setting current-min = m if m is smaller ensures that current-min now accounts for paths

with up to i states. Therefore, 12 will hold at the beginning of the next iteration.

Since we only consider paths that reach final once, it is correct to continue the state traversal

il

proc maxcount (start, cond, final)
current-max = -00;
R = {(s, 1) 1 s E start n cond} U {(s,0) j sE start f cond};
loop

Reached-final = R n Final;
if Reached-final # 0 then

m = max{k I (s, k) E Reached-final};
if m > current-max then current-max = m;

R' = R n Not-final;
if R' = 0 then return current.max;
R = T(,W);

endloop;

Figure 6: Maximum Condition Count Algorithm

only from states in R' = R n Not-final. If this set is empty, there are no further paths, with more

that i states, that reach final. Therefore, by invariant 12, current-min is the correct return value.

For the case where the loop is continued, the definition of transition relation ensures that the count

component in the augmented state space is incremented on a transition step if and only if the new

state is in cond. This implies that the count component k represents at all times the number of

states in cond traversed on a path. Consequently, 11 will hold again for the new value of R obtained

as the image of R' under T.

Next, we argue that the algorithm terminates. The precondition ensures that all paths from

start reach final in a finite number of steps. Thus, we will eventually have R' = R n Not final =0.

and the algorithm correctly returns the value currentrin.

As an optimization, the number of iterations required in certain cases can be reduced by intro-

ducing the line

R' = R'A {(s,k) I .s E S A k < current-min}

before testing R' = 0. All paths with a count of at least currentrain can be safely discarded. which

reduces the search to those paths on which the count for cond is still smaller than the currently

achieved minimum.

Finally, we note that the algorithm for the maximum count. given in figure i. has the same

structure and can be obtained by replacing min with max and reversing the inequalities. Variants

of both algorithms can be used to compute other measures that are a function of the number of

states on a path that satisfy a given condition. For example, we can determine the minimum and

the maximum number of states belonging to a given set cond over all paths of a certain length I in

the state space.

12

6 Timed Transition Graphs

Until this point, we have based our algorithms on a system model in which all transitions take

one time unit. However, in actual systems, this assumption is not realistic, because events take

different amounts of time to occur. Moreover, the time taken by a transition may change for

different executions of the system. These characteristics can be more accurately represented in

different models, such as timed transition graphs (TTG) [6].
A TTG model is an extension of a state-transition graph, where each transition has associated

with it a time range of the form [1, u], where 1, u E IN. Formally, the transition relation is given

by N C S x IN x IN x S, where S is the set of states of the model. N(s,1,u,s') denotes that

the transition between state s and s' can nondeterministically take any number of steps between 1

and u. The implementation uses a transition relation KV C S x IN x S derived from N, such that

K (s,d, s') is true iff there exist l, u E N such that N(s,1, u,s') holds, and 1 < d < u.

In order to compute quantitative characteristics for TTG models we use the same technique as

in the algorithms of the previous section. There we augmented the state space with an additional

integer variable to count the number of states satisfying a given condition. We will use the same

technique to count the number of time steps needed to reach a given state. Thus. we define the

augmented state space to be S, = S x IN and the transition relation Nq g Sq x S, as

N ((s, t), (s', t')) = ./(s,d.s') A t' = t + d

Informally, there exists a transition in S, from (s, t) to (s', t') if and only if there exists a transition

in S between s and s' that may take d steps to occur, and t' = t + d.

We can initialize the time component of a set of starting states start to 0, and compute the set

Reach of states in Sq reachable from start. We will then have that (s. I E Reach if and only if s

can be reached from start in t steps. The same mincount and maxcount algorithms can be used to

compute the minimum and maximum number of time steps needed to reach a state set final from

start.

Similarly, we can compute the number of time units on a path spent in states that belong to

a given state set cond. In TTGs time spent in a state s is defined as the number of time steps it

takes to transition out of s. Therefore, to compute the time spent in states belonging to cond on

a given path, we modify the transition relation for the augmented state space as follows:

N. ((s, t), (s', t')) = A/r(s, d, s') A ((s E cond /1 t' = t + d) V (s 0[cond A t' = t))

Notice that this transition relation only increments the time count when s E cond. This means

that if a state (s, t) is reachable from a state set start, then there exists a path leading to s such

that t is equal to the number of time units spent in states that belt', -, to cond on that path. The

13

same algorithms, using the new transition relation, will then compute the minimum and maximum

time spent in states that belong to cond, over all paths leading from start to final.

By using these variants of the algorithms presented earlier we show how to compute the same

type of properties for a more powerful model. This demonstrates that the technique of augment-

ing the state space can be easily adapted to express and compute different kinds of quantitative

information.

7 Example - An Aircraft Control System

One of the most critical applications of real-time systems is in aircraft contL It is extremely

important that time bounds are not violated in such systems. Because of the risks involved in

the failure of an aircraft, only conservative approaches to design and implementation are routinely

used. Many modern techniques for software design such as formal methods are not commonly

employed. We believe that formal verification can be very useful in increasing the liability of

these systems by assisting in the validation of schedulability and response times of the various

components. This section will briefly describe an aircraft control system used in military airplanes.

We have attempted to make this model as realistic as possible. We will then show how some of its

timing constraints can be checked using by computing quantitative properties.

System Description

The control system for an airplane can be characterized by a set of sensors and actuators connected

to a central processor. This processor executes the software to analyze sensor data and control the

actuators. Our model describes this control program and defines its requirements so that the

specifications for the airplane are met. The requirements used are similar to those of existing

military aircraft, and the model is similar to the one described in [16].

The aircraft controller is divided into systems and subsystems. Each system performs a specific

task in controlling a component of the airplane. The most important systems are implemented in

our model to provide a realistic representation of the controller. The systems being controlled are:

" Navigation: Computes aircraft position. Takes into account data such as speed, altitude. and

positioning data received from satellites or ground stations.

* Radar Control: Receives and processes data from radars. It also identifies targets and target

position.

" Radar Warning Receiver: This system identifies possible threats to the aircraft.

" Weapon Control: Aims and activates aircraft weapons.

14

* Display: Updates information on the pilot's screen.

* Tracking: Updates target position. Data from this system is used to aim the weapons.

e Data Bus: Provides communication between processor and external devices.

Each system is composed of one or more subsystems. Timing constraints for each subsystem

are derived from factors such as required accuracy, human response characteristics and hardware

requirements. For example, the screen must be updated frequently enough so that motion appears

continuous. To accomplish this, the update must occur at least once every 50ms. The following

table presents the subsystems being modelled, as well as their major timing requirements. The

priority assignment will be explained subsequently.

System Subsystem Period Exec. % CPU Priority
Display status update 200 3 1.50 12

keyset 200 t 0.50 16
hook update 80 2 2.50 36

graphic display 80 9 11.25 40
store update 200 1 0.50 20

RWR contact mgmt. 25 5 20.00 72
Radar target update 50 5 10.00 60

tracking filter 25 2 8.00 84
NAV nay update 50 8 16.00 56

steering cmds. 200 :3 1.50 24
Tracking target update 100 5 5.00 32
Weapon weapon protocol 200' 1 0.50 28

weapon aim 50 3 6.00 64
weapon release 200" 3 1.50 98

Data Bus poll bus devices 40 1 2.50 68
* Weapon protocol is an aperiodic process with a deadline of 200ms.

** Weapon release has a period of 200ms, but its deadline is 5ms.

Concurrent processes are used to implement each subsystem. Communication among the various

processes is done indirectly. No data is shared directly by two subsystems. Processes communicate

only through data servers called monitor tasks. Each system maintains a server process that

accepts requests for data, and returns the desired information. The various subsystems in each

system update the data in the servers. Monitor tasks only accept requests. respond to them.

and then block. They are assigned low priority, and priority inheritance is used to maintain

predictability [6, 19].

With the exception of the weapon system, all other systems contain only periodic processes,

which are scheduled to execute at the beginning of their period. When a process is granted the

CPU it acquires the data it needs through the monitor tasks, executes, updates information on its

own data server, and blocks waiting for its next execution period.

15

The weapon system contains a mixture of periodic and aperiodic processes. It is activated

when the display keyset subsystem identifies that the pilot has pressed the firing button. This

event causes the weapon protocol subsystem to be activated. It then signals the weapon aim

subsystem that had been blocked. Weapon aim is then scheduled to be executed every 5Oms. It

aims the aircraft weapons based on the current position of the target. It also decides when to fire

and then starts the weapon release subsystem. The firing sequence can be aborted until weapon

release is scheduled, but not after this point. Weapon release then executes periodically and fires

the weapons 5 times. once per second.

In order to enforce the different timing constraints of the processes, priority scheduling is

used. Predictability is guaranteed by scheduling the processes using Rate Monotonic Schedul-

ing (RMS) [12, 151. The RMS theory provides an algorithm for assigning priorities to processes in

order to predict their behavior. Higher priority is given to processes with shorter periods. This

algorithm has been shown to be an optimal static priority algorithm with respect to response time

requirements. This means that if a process set is schedulable using a fixed priority scheduling

policy, then it is schedulable using this algorithm. However, the RMS algorithm itself does not

determine if a process set is schedulable or not.

8 Verification of the Aircraft Control System

Implementation

We have implemented this control system in the SMV language [17). The SMV model checker

has been used to verify its functional correctness, while its timing correctness has been checked

using the quantitative algorithms described in this paper. Most of the characteristics described

above were implemented, although some abstractions have been performed for simplicity. A more

detailed description of the implementation follows.

A time quantum of Ims was used, in other words, a transition corresponds to a delav of Iis in

our model. A global timer is implemented that starts periodic processes when their period arrives.

Whenever awakened, a process requests execution and waits until it has been granted the CPU.

The process then runs for its defined execution time. An internal counter stores the time since

execution has started. After executing, the process releases the CPU and blocks, waiting for the

next period.

The time to request data from a monitor task and wait for the response is assumed to be small

compared to the total execution time. This is reasonable if we assume an efficient implementation.

Sending request and response messages takes only a small amount of time. Processing in the

monitor tasks is also fast, considering the limited range of functions performed. The assumption

can only be violated if blocking due to synchronization is long. The access pattern to the monitor

16

tasks, however, minimizes this possibility. They simply receive requests, retrieve the data from

memory, and return it. There are no nested critical sections. Moreover, the priority inheritance

protocols used maintain predictability and eliminate the possibility of unbounded blocking due to

synchronization (6, 19]. Since blocking times can be computed, we assume they are included in the

execution t~me defined. A more detailed model can be constructed to remove this assumption, but

because of the reasons outlined above, we believe this would not change the results significantly. In

order to optimize response time, we have implemented a preemptive scheduler. It accepts requests

for execution and chooses the highest priority process requesting the CPU. If a request arrives from

a higher priority process after execution has started, the scheduler preempts the executing process

and starts the higher priority one. When a process finishes executing it resets its request, and

the scheduler chooses another process. If data was shared directly,, synchronization could cause

deadlocks. This could happen, for example because of cyclic dependencies among locks. Monitor

tasks avoid this problem because they eliminate the possibility of complex data dependencies.

We have also implemented a non-preemptive scheduler. Preemptability is a feature that may not

always be available, and we wanted to observe the effects of removing this feature from the model.

In this case, once a process starts executing, it continues executing until it voluntarily releases

the CPU. If a higher priority process requests execution, it has to wait until the running process

finishes. Non-preemptive schedulers usually cause response time for higher priority processes to be

higher. They are however simpler to implement, and allow for simpler programs (for example. the

deadlock problem described above does not exist if no preemption occurs). Having both types of

scheduler in our model allowed us to extend our results to a larger class of systems.

Verification Results

Schedulability is one of the most important properties of a real-time system. It states that zo

process will miss its deadline. In this example the deadlines are the same as the periods (except for

the weapon release subsystem). The RMS theory checks for schedulability by computing the CPU

utilization of the process set. Our algorithms, however, use a different approach. We compute the

minimum and maximum execution times for each process, and check if they always finish before

their deadline. Notice that our approach always determines the schedulability. The RMS analysis

may not determine it, if certain conditions do not hold for the system. Another advantage of this

technique is that our algorithms only require that processes be modelled as state graphs, while

RMS imposes restrictions on their behavior.

The following table summarizes the execution times computed by the algorithms. Processes

are shown in decreasing order of priority. Deadlines are also shown so that schedulability can be

easily checked. The minimum and maximum execution times are given for both the preemptive

17

and non-preemptive schedulers.

Execution Times
Subsystem Deadline Preemptive Non Preempt.

Min Max Min Max
Weapon release 5 3 3 3 9

Radar tracking filter 25 2 5 2 10
RWR contact mgmt. 25 7 10 7 15

Data bus poll 40 1 11 1 14
Weapon aim 50 10 14 2 18

Radar target update 50 12 19 12 19
NAV update 50 20 34 20 27

Display graphic 80 10 44 10 43
Display hook update 80 14 46 14 47

Tracking target update 100 26 51 26 .51
Weapon protocol 200 1 21 3 46

NAV steering cmds. 200 35 85 36 74
Display store update 200 36 95 37 97

Display keyset 200 37 96 38 98
Display status update 200 40 99 41 101

We can see from the table above that the process set is schedulable using preemptive schedul-

ing. An analysis of a similar process set using RMS showed that only the first eight processes were

guaranteed to meet their deadlines [16]. From our results we can also identify many important

parameters of the system. For example. the response time is usually very low for best-case com-

putations, but it is also good for the worst case. Most processes take less than half their required

time to execute. This indicates that the system is still not close to saturation, although the total

CPU utilization is high.

Notice also that preemption does not have a big impact on response times. Except for the

most critical process. all other , maintain their schedulability if a non-preemptive scheduler is used.

Moreover, we can see that although non-preemption causes weapon release to miss its deadline.

but by a relatively small amount. If a preemptive scheduler were expensive. reducing the CPU

utilization slightly might make the complete system schedulable without changing the scheduler.

By having such information the designer can easily assess the impact of various alternatives to

improve the performance, without having to change the implementation. It should be noted that

an analysis of this type can't be done using methods like the RMS utilization test or reachability

computation.

As another example of how the designer can use these results, we can analyze the response time

for the display graphic subsystem. The periodicity of this subsystem is 80ms and a shorter period

might be desired to make motion look continuous. However, the response time of this process can

be as high as 46ms. Changing the period to 40ms would most likely make it miss its deadline. The

designer may choose to decrease it only to 50ms, but this is still close to the response time. and the

18

increased load might make the system not schedulable. The model can be easily changed to check

this hypothesis, but this analysis shows that it is unlikely that decreasing the period will maintain

schedulability.

The results obtained about execution times can also be used to infer how other properties of

the system might be affected by changes. For example, the maximum continuous executing time

and the maximum continuous idle time for the CPU can be computed. In this model, the CPU

executes for a maximum of 99ms before becoming idle, and can remain idle for at most 18ms

before executing again. The maximum idle time shows that the processor is not saturated, and

more processes could be added to the process set. On the other hand, the maximum executing

time indicates that the processor load is high, considering that most processes have periods smaller

than 100ms. This means that although more processes could be added, the-response time of lower

priority processes might become significantly higher.

The effect of preemption on execution time can be assessed as well. We have computed the

maximum and minimum execution times for processes after they have been granted the CPU. If

minimum and maximum are not the same, the process can be preempted after starting execution.

For example, the display graphic subsystem can finish in as little as 7ms and in as much as 14ms

after it starts execution. In other words, preemption overhead can be as high as 7ms for this

subsystem. The NAV steering subsystem has a minimum of Ims and a maximum of 44ms. This

means that other processes can delay it for 43ms. It is clear that NAV steering can be preempted

for a longer time than display graphic, since it has lower priority. Our results, however, allow us

to determine how much longer it can be preempted. As an important variation of this property.

we can compute the priority inversion time for high priority processes. This can help identify the

reasons why a system is not predictable, and help correct its behavior.

We examine one more property of this particular model. The weapons system is critical to the

aircraft. It is very important that it responds quickly to the pilot's command. However. when

a pilot presses the firing button, many subsystems are involved in identifying and responding to

this event. We can determine its response time using the algorithms described previously. By

computing the minimum and maximum times between pressing the fire button and the execution

of the weapon release process we are able to determine if the weapon system responds quickly

enough to satisfy the aircraft requirements. In our example, the minimum time between detecting

that the fire button has been depressed and the end of execution of weapon release is 120ms.

The maximum time is 167ms, not accounting for the possibility that the firing sequence may be

aborted, or that weapon aim may lose contact with the target. Of course external events have to

be added to these numbers, such as the time between pressing the button and it being detected by

display keyset, or the time it takes to actually fire the weapons. But the designer of the system

19

now knows how much time the firing protocol adds to these external factors in the actual airplane.

Again, this type of analysis may be difficult to do with other tools. The RMS schedulability test

cannot give tight bounds on specific response times for such properties, since its only parameter is

CPU utilization. Algorithms that use reachability analysis are also inappropriate for such analysis.

Specific exceptions, with previously defined time bounds, would have to be added to the model to

observe these characteristics.

The finite-state model was implemented in about 600 lines of SMV code. The final model has

about 1015 states, and the transition relation uses approximately 4600 BDD nodes. To compute

each property described above took between 5 and 15 seconds using an i486 based workstation.

9 Conclusion

This paper proposes a general framework for computing quantitative characteristics of finite-state

real-time systems. We have devised algorithms that calculate exact numerical bounds on the delay

between two specified events, as well as on the frequency of the occurrence of a condition within a

given interval. Rather than just determining the correctness of the model, the results computed by

our algorithms provide hints about its behavior that can be useful in improving the performance

of the system.

Our method can be easily integrated with model checking techniques. In fact. the lower and

upper bound algorithms have been added to the most recent version of the SMV model checking

system. Using this implementation we demonstrate the practical importance of our approach by

analyzing a model of an aircraft control system. We have been able to obtain stronger results than

those produced using traditional methods for real-time system verification.

We have found this approach to be very flexible. We have shown how quantitative characteristics

can be computed for state-transition graphs. In addition, we have extended the algorithms to

models in which transitions may take more than one time unit. We also plan to investigate the

application of these techniques to other models of computation. such as continuous time and hybrid

systems.

We believe that the quantitative information that our method provides can be extremely useful

to designers during the development of real-time systems. We are confident that these techniques

will prove practical in the verification of a variety of other realistic designs.

20

References
[1] R. Alur, C. Courcourbetis, and D. Dill. Model-checking for real-time systems. In Proceedings of the 5th

Symp. on Logic in Computer Science, pages 414-425, 1990.

(21 R. Alur and D. Dill. Automata for modeling real-time systems. In Lecture Notes in Computer Science,
17th ICALP. Springer-Verlag, 1990.

[3] R. Alur and T. A. Henzinger. Logics and models of real-time: a survey. In Lecture Notes in Computer
Science, Real- Time: Theory in Practice. Springer-Verlag, 1992.

[4] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on
Computers, C-35(8), 1986.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model checking: 1021

states and beyond. In LICS, 1990.

[6] S. V. Campos and E. M. Clarke. Real-time symbolic model checking for discrete time models. In First
AJMAST International Workshop in Real-Time Systems, 1993.

[7] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent sys-
tems using temporal logic specifications. ACM Transactions on Programming Languages and Systems,
8(2):244-263, 1986.

[8] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal reasoning. In Lecture
Notes in Computer Science. Springer-Verlag, 1990.

[9] A. N. Fredette and R. Cleaveland. Rtsl: a language for real-time schedulability analysis. In IEEE
Real-Time Systems Symposium, 1993.

[10] R. Gerber and I. Lee. A proof system for communicating shared resources. In IEEE Real- Time Systems
Symposium, 1990.

[111 T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time systems. In
Proceedings of the 7th Symp. on Logic in Computer Science, 1992.

[12] J. P. Lehoczky, L. Sha, J. K. Strosnider, and H. Tokuda. Fixed priority scheduling theory for hard
real-time systems. In Foundations of Real-Time Computing - Scheduling and Resource Management.
Kluwer Academic Publishers, 1991.

[13] H. Lewis. A logic of concrete time intervals. In Proceedings of the 5th Symp. on Logic in Computer
Science, pages 380-389, 1990.

[14] B. Lin and A. R. Newton. Efficient symbolic manipulation of equvialence relations and classes. In
Proceeding of the fnt. Workshop on Formal Methods in VLSI Design. 1991.

[15] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard real-time e.nvi-
ronment. Journal of the ACM, 20(1), 1973.

[16] C. D. Locke, D. R. Vogel, and T. J. Mesler. Building a predictable avionics platform in ada: a case
study. In IEEE Real-Time Systems Symposium, 1991.

[17] K. L. McMillan. Symbolic model checking - an approach to the state explosion problem. PhD thesis.
SCS, Carnegie Mellon University, 1992.

(181 X. Nicollin, J. Sifakis, and S. Yovine. From atp to timed graphs and hybrid systems. In Lecture Notes
in Computer Science, Real-Time: Theory in Practice. Springer-Verlag, 1992.

[19] R. Rajkumar. Task synchronization in real-time systems. PhD thesis, ECE, Carnegie Mellon University,
1989.

[201 L. Sha, M. H. Klein, and J. B. Goodenough. Rate monotonic analysis for real-time systems. In Founda-
tions of Real-Time Computing - Scheduling and Resource Management. Kluwer Academic Publishers,
1991.

21

